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Abstract

Motivation: Recent advancements in single-cell genomics have enabled scaled multi-modal
genomic measurements, but a major challenge we still face is predicting variability of downstream
biological processes from upstream genomic data, such as cell surface protein expression
(CITE-seq) from single-cell RNA expression data (scRNA-seq). In this report, we present machine
learning models that can predict CITE-seq from scRNA-seq alone, which may improve the power of
CD834+ HSPC subpopulation analysis from scRNA-seq without paired CITE-seq data.

Results: We initially constructed four machine learning model types incorporating feature selection
using principal component analysis or selection of top correlated genes and with input data either
from all three patients or from per-patient data. Our final model used singular value decomposition
for feature selection and a LightGBM design, with input data from all three patients. Our models
were trained and tested on paired scRNA-seq/CITE-seq data from CD34+ HSPCs from three healthy
donors. Our final model predicted CITE-seq for 140 target proteins with a custom correlation score
0.878 and mean squared error of 2.75. Comparison to top performing models will require testing on
a held-out dataset to be published in the future.

Availability: All code and analysis is available in the public GitHub repository:
https://qgithub.com/qgchappat/ECBME-4060-2022-Project-Kaggle-Open-Problems-Multimodal-Single

-Cell-Integration

1 Introduction

Recent advancements in single-cell genomics have enabled us to take
simultaneous measurements of multiple genomic modalities in single
cells. However, data analysis methods to synthesize data and uncover
dynamic biological processes still need to be studied further. One of the
major challenges that we face is predicting variability of cell circuitry
and downstream biological processes from upstream genomic data.
When analyzing single-cell data, it is important to not only focus on
individual feature spaces, but also to study the shared and unique
variations between different modalities and batches (Lahnemann, 2020).
The overarching goal of the referenced Kaggle challenge (Open
lems in Single-Cell Analysis) was to collectively devise methods to
map genetic information across layers of cellular state and predict one
genetic modality using another modality (i.e., transcriptomic from
genomic, and proteomic from transcriptomic data), which could lead to a
better understanding of complex regulatory processes in cells. We
focused on the second challenge, which was to predict how single cell
RNA and cell surface protein measurements co-vary as bone marrow
stem cells mature into various types of blood cells. The challenge used a
dataset consisting of CD34+ hematopoietic stem and precursor cells, a
rare self-renewing cell type that can differentiate into every type of
mature blood cell with a well-defined hierarchy (AbuSamra, 2017).
Since these are transcriptionally similar cells, understanding both RNA
and protein expression data (CITE-seq) is vital to deconvolve their cell
identities. In this report, we present multiple machine learning models
that can predict CITE-seq protein expression (100 — 200 features per
cell) from scRNA-seq alone (>10,000 features per cell) for a given cell
type, which may subsequently improve the power of cell subpopulation
analysis from scRNA-seq without paired CITE-seq data.

2 Methods

2.1 Model Designs:

In creating a method to predict CITE-seq using scRNA-seq, we desired
to evaluate whether a generalizable machine learning model could be
applied across individual patients or across all patients for different
proteins, and which approach would have greater performance and,
therefore, greater biological significance. Additionally, we desired to
incorporate genes that did not encode for a given protein as those
transcripts could still have predictive power on protein expression (e.g.,
protein translation programs upstream of a given protein, or
proteins/genes with related biological pathways). However, given the
massive number of scRNA-seq features and the expected impact on
required training time, we incorporated feature selection into each model
through principal component analysis (PCA), selection of top correlated
genes, or singular value decomposition (SVD).

In the end, we created five separate model types with different designs
and inputs, with the final model informed by results from the first four:

(1) Models taking input scRNA-seq features consisting of a) genes
encoding proteins of interest and b) top principle components
(PCs) learned from genes not directly encoding proteins of
interest; and trained on data from all patients (“PCA All”)

(2) Models using a Pearson correlation matrix to select top
correlated genes for each protein; and trained on data from all
patients (“Pearson-R All”)

(3) Models taking similar input scRNA-seq features as “PCA All”
(encoding genes and top PCs from non-encoding genes), but
trained on per-patient datasets (“PCA Per-Patient”)
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(4) Models taking similar input scRNA-seq features as “Pearson-R
All” (selecting for top correlated genes), but trained on
per-patient datasets (‘“Pearson-R Per-Patient”)

(5) LightGBM models taking input scRNA-seq features consisting
of a) genes directly encoding to proteins of interest and b) top
features learned from SVD on non-encoding genes; and trained
on data from all patients (“SVD + LightGBM”)

For the first four model types, we leveraged AutoGluon, an automated
machine learning model toolkit allowing for quick prototyping of three
distinct machine learning models (LightGBM, XGBoost, and CAT
regression), and to rapidly optimize these model architectures with
preliminarily optimized hyperparameters (Erickson, 2020). For the fifth
model type, we specifically trained LightGBM models, as the first four
AutoGluon models had greatest efficiency trade-offs with LightGBM
designs (i.e., highest result accuracy compared to training time). We
implemented LightGBM models with 10 max depth, 100 max leaves in a
tree, and minimum child samples of 250 (Guolin, 2017).

For each of the PCA models, the top 500 PCs were used for feature
selection. For the Pearson correlation matrix models, the top 10
correlated genes were chosen for feature selection. For the SVD model,
we set the output dimensionality to 512. The choice of PCA dimensions,
top number of correlated genes, and SVD dimensions was informed by
the top entries in the Kaggle competition.

2.2 Training Methodology

For the all-patient model types (“PCA All” and “Pearson-R All”), 140
models were trained using every patient’s data, with each model
predicting CITE-seq levels for one given protein (for 140 CITE-seq
predictions in total). For the per-patient model types (“PCA Per-Patient”
and “Pearson-R Per-Patient”), 140 models for each protein were trained
for three patients, with each model predicting CITE-seq levels for one
given protein for one given patient (for 420 models across the three
patients, and 420 CITE-seq predictions in total). The four AutoGluon
model types were trained using AutoGluon’s “Best Quality” preset to
optimize for most hyperparameters (e.g., learning rate). Root mean
squared error was used as the loss function for training. We chose an
80/20 training/testing split of our dataset; for all-patient models we used
8-fold cross-validation, and for per-patient models we used 4-fold
cross-validation.

For the “SVD + LightGBM” model types, 140 models were trained
using every patient’s data. L2 loss (squared error loss) was used as the
loss function for training. Learning rate was set to 0.1. We chose a 85/15
training/testing split of our data and 3-fold cross-validation, with the
folds based on donor identities.

2.3 Data and Feature Selection

Our dataset consisted of paired scRNA-seq and CITE-seq data from
70,988 unique CD34+ hematopoietic stem and precursor cells (HSPCs)
derived from three healthy donors, from the original Kaggle competition
dataset of ~280,000 HSPCs. Our input data consisted of scRNA-seq
(22,050 gene expression features for each cell), and our prediction data
was the paired CITE-seq (140 protein expression features for each cell),
although our input dataset was scarce with ~78% of scRNA-seq features
having zero values. Nonetheless, few preprocessing steps were required
for the data as it was already cleaned and normalized, with no missing
values. The only step performed was removing scRNA-seq features with
non-existent gene expression (i.e., genes that were not expressed in any
cells in the train or test datasets and thus have limited predictive utility),
or around 449 of the scRNA-seq features.

Prior to developing our models, we performed exploratory data
analysis on the full, unpaired scRNA-seq dataset (~120,000 unique
HSPCs) (Fig. 1) and the CITE-seq dataset. The HSCPs were evenly
distributed across donors. Slightly more samples were collected on the
third collection day. Lastly, cells were labeled mostly as hematopoietic
stem cells; very few were labeled as B cell progenitors or monocyte
progenitors. Analysis of ~20 genes’ expression level distributions
showed that most genes had normally distributed expression across cell
samples. However, analysis of ~20 proteins’ expression level
distributions suggested that protein expression had diverse distributions,
with many normal, some multimodal, and several noisy outliers.
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Fig. 1. Distribution of CD34+ hematopoietic stem and precursor cells by metadata
variables. (Left) Number of cells by donor identity. (Middle) Number of cells by day of
sample collection. (Right) Number of cells by annotated cell type. Note: EDA was
performed on the full scRNA-seq dataset, although a subset (~71,000) of cells were used
for model purposes given the requirement of paired CITE-seq data.

Finally, we implemented feature selection to mitigate computational
costs required to train models at scale for each protein. We expected
most of the ~22,000 genetic features do not encode for the 140 protein
targets, although we hypothesized that a subset of scRNA-seq genes may
be directly linked to CITE-seq target proteins. This would allow us to
preserve putative encoding genes while performing feature selection on
putative non-encoding genes. Specifically, to identify encoding genes,
we identified the set of genes for which any of the 140 protein names
were contained within the gene name (149 genes in total). We
subsequently defined all other genes as non-encoding genes to be used in
feature selection steps for each model.

3 Results

The Kaggle competition scored model performance using a correlation
score, defined by the average of each sample’s Pearson correlation
coefficient [ and calculated by:

cov( Y,Y! (1)

Pz, =
Y,y 0,0,

where cov(Y,Y) is the covariance between the predicted and ground
truth CITE-seq expression level, and o is the standard deviation of the
predicted and ground truth expression. However, as the final test dataset
(corresponding to a later sample collection timepoint) was not publicly
available at the time of the project, we cannot directly compare
correlation scores to the full leaderboard, although we can get a general
sense of comparative performance. Additionally, we internally evaluated
our models using a mean-squared-error (MSE) metric.

We first assessed our models’ performances using MSE and the
correlation score calculated on the withheld test dataset (Fig. 2). MSE
was lowest for “SVD + LightGBM” model type (~2.75), and lower for
per-patient model types compared to all-patient model types (2.79 and
2.81 vs. 2.88 and 2.90). However, while correlation score was
comparable between the “SVD + LightGBM” model type and the
all-patient model types (0.878 vs. 0.870 and 0.875), it was substantially
lower for per-patient model types (0.362 and 0.411). We hypothesize
per-patient model correlation scores suffer significantly because the
number of observations in the training datasets is effectively quartered
when creating per-patient models (despite the number of features staying
the same). Taken together, it is difficult to conclude how patient-specific
genetic information is in the context of protein expression prediction;
further experiments should control for training data size to conclude
whether a single model across all patients or one model per patient is
more accurate.
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Fig. 2. Comparison of model performance evaluated on test data. Note: correlation
scores from the public Kaggle leaderboard are not plotted as our models tested on a
different test dataset.

Lastly, we briefly and indirectly compare our models’ correlation
scores to the Kaggle leaderboard. At the time of this report, the top
entries in the public leaderboard have scores 0.815 - 0.816, while our
correlation score is marginally higher at 0.878 for our top-performing
“SVD + LightGBM” model type. As stated before, our test dataset was
not the same as the private test dataset used for Kaggle submissions. Our
correlation score may be higher because our test dataset is likely more
similar to the training dataset than the private test dataset, given the
private test dataset on Kaggle consists of samples collected at a later fifth
timepoint. Thus, we cannot conclude whether our model types perform
better than leading models on Kaggle. Nonetheless, 0.816 top correlation
score for the public dataset and 0.776 top correlation score for the private
dataset suggests that further investigation is needed to improve methods
to accurately map genomic information across layers of single-cell data.

Discussion

We successfully developed five different machine learning models to
predict CITE-seq from scRNA-seq data and aimed to evaluate 1)
whether models using data from all patients or from one patient at a time
would have greatest predictive performance (i.e., the importance of
patient-specific genetic information) and 2) different feature selection
strategies such as PCA, top correlated genes, and SVD. Our final model
type incorporated a LightGBM design with feature selection using SVD,
with hyperparameters and feature selection parameters informed by
experiments with our first four models and the models submitted on the
original Kaggle competition. We trained and evaluated our models using
a CD34+ HSPC dataset with paired scRNA-seq and CITE-seq data and
compared MSE and a custom correlation score metric to determine
which models had the best performance. The five models had similar
MSEs, though MSE for the LightGBM/SVD model was lowest.
However, correlation scores were significantly higher for those models
that have trained on data from all patients, possibly due to per-patient
models training on significantly smaller datasets to perform per-patient
CITE-seq predictions. As the dataset used to test the Kaggle leaderboard
submissions was not publicly available at the time of this report, we
could not directly compare accuracy, although our models had
marginally higher correlation scores (likely due to greater similarity
between our training and test datasets, compared to our training dataset
and the private test dataset on Kaggle). Our findings suggest that, while
it could be further improved, our machine learning method can learn
both direct and indirect relationships between genetic features and
downstream cell-surface protein expression, with indirect relationships
learned after feature selection.

Beyond additional validation, we suggest further investigation into
improving feature selection and model tuning. For example, a more

nuanced feature selection method (e.g., assigning scores to genes using
known protein-protein, gene-gene, or protein-gene relationships, and
then selecting for top scores) could alleviate computational costs to train
models but still preserve biologically significant relationships between
target proteins and non-encoding genes, although this approach would
require a comprehensive review of literature describing the protein
targets in our CD34+ HSPC single-cell dataset. Additionally, while
AutoGluon does a reasonably good job of optimizing hyperparameters
for a given machine learning method, future rigorous experiments could
better optimize hyperparameters for the LightGBM model we developed.
Although our study focused on predicting CITE-seq from scRNA-seq
derived from CD34+ HSPCs, knowledge gained from this project and
similar studies could be applied to research in other areas of genomic
biology. One relevant topic could be to address the first challenge of the
original Kaggle competition, to predict gene expression scRNA-seq from
chromatin accessibility ATAC-seq using model designs similar to our
developed models. More generally, this project underscores the value of
machine learning in the field of biology and genomics — even with
limited computing resources and dataset sizes, we were able to obtain
meaningful insights into predicting variability of cell circuitry and
biological mechanisms from genomic information. In sum, our machine
learning models show promise in addressing the crucial challenge of
uncovering and mapping biological processes across genomic layers,
which would be of great scientific value to the field of genomics and
computational biology as single-cell study data continues to expand.
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