MRI Motion Detection and Correction with Complex-value AFT-Net

Tutor: Yanting Yang Zachary Abessera, Quentin Chappat, Nikhil Kumar Kuppa

DEEP LEARNING IN BIOMEDICAL IMAGING

Introduction: Background

• MRI: k-space and image domain

• MRI Motion detection and correction with Deep Learning

Introduction: Dataset

• Brain MRI: fastMRI Dataset

- 6,970 fully sampled brain MRIs
- 3 & 1.5 Tesla 4 coils
- Includes axial T1w, T2w and FLAIR images
- Some T1w included admissions of contrast agent

Туре	T2 1.5T	T1 3T	Total		
Number	692	109	801		

Number of scans for the different contrasts and scanner field strengths of the brain raw dataset selected.

Florian Knoll & Jure Zbontar. fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning

3 | DEEP LEARNING IN BIOMEDICAL IMAGING

	Type 1	Type 2
acquisition	AXT2	AXT1PRE
slices	16	16
receiverChannels	4	4
height	640	640
weight	320	320
systemFieldStrength_T	1.494	2.8936

Data selection for our project

Introduction: Existing Research

Deep Learning-based MRI Reconstruction with Artificial Fourier Transform (AFT)-Net

Yanting Yang Department of Biomedical Engineering Columbia University yy3189@columbia.edu Andrew F. Laine Department of Biomedical Engineering Columbia University al418@columbia.edu

Jia Guo Department of Psychiatry Columbia University jg3400@columbia.edu

CU-Net: A Completely Complex U-Net for MR k-space Signal Processing

Dipika Sikka^{1,2}, Noah Igra^{3,4}, Sabrina Gjerswold-Sellec¹, Cynthia Gao⁵, Ed Wu⁶, and Jia Guo⁷

¹Department of Biomedical Engineering, Columbia University, New York, NY, United States, ²VantAl, New York, NY, United States, ³Department of Applied Mathematics, Columbia University, New York, NY, United States, ⁴Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, ⁵Department of Computer Science, Columbia University, New York, NY, United States, ⁶Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China, ⁷Department of Psychiatry, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States

Methods: AFT-Net Architecture

Methods: Previous Experiments

Different flavors of AFT-Net:

- AFT + CUNet = AFT-Net (I)
- CUNet + AFT = AFT-Net (K)
- CUNet + AFT + CUNet = AFT-Net (KI)

Tasks:

- Reconstruction (AFT only)
- Reconstruction + denoising
- Reconstruction + accelerated imaging

Methods: Our Aims

- Apply AFT-Net for motion correction with human brain data:
 - a. Create a motion corrupted dataset from our brain MRI data
 - b. Test AFT-Net performance on different configurations

7 | DEEP LEARNING IN BIOMEDICAL IMAGING

a) Create a motion corrupted dataset from our brain MRI

- Goal: add motion artefacts to motion-free k-space data
- Problem: TorchIO package do not take phase information into account, taking the magnitude of the image space data
- Solution: Modified original TorchIO 'random motion' class to process raw complex images

Default image

TorchIO corrupted

Modified TorchIO

Phase - Modified TorchIO

b) Test AFT-Net performance on different configurations

- Data Augmentation by 2x: one random motion corrupted image for each image of the dataset
- **Data Splitting**: 60/20/20 keeping corrupted and uncorrupted data balanced
- Training on:
 - T1 3T data
 - o T2 1.5T data
 - o T1 3T & T2 1.5T data
- Architectures Used: AFT-Net (I), AFT-Net (KI), AFT-Net (K)
 - Transfer learning based on AFT and CU-Net trainings
- Optimizer: Adam with decaying learning rate
- Loss Function: MSE
- Validation Score: SSIM

Results: Examples [T1-3T]

Corrupted image corrected with AFT-Net KI trained on T1 3T only

Output of an original image with AFT-Net KI trained on T1 3T only

10 | DEEP LEARNING IN BIOMEDICAL IMAGING

COLUMBIA ENGINEERING

Results: Examples [T2 - 1.5T]

Corrupted image corrected with AFT-Net K trained on T2 1.5T only

Output of an original image with AFT-Net K trained on T2 1.5T only

COLUMBIA ENGINEERING

Results: Examples [Both Datasets]

Corrupted T1 image corrected with AFT-Net K trained on both datasets

Output of an original T1 image with AFT-Net K trained on on both datasets

COLUMBIA ENGINEERING

Results: Examples [Both Datasets]

. .

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Results: Uncorrupted Data

Dataset	T1 3T			T2 1.5T			T1 3T & T2 1.5T		
Model	SSIM	PSNR	RMSE	SSIM	PSNR	RMSE	SSIM	PSNR	RMSE
CU-Net	9.2102e-01 ± 1.1777e-02	3.2554e+01 ± 1.4513e+00	1.6120e-01 ± 4.0768e-02	9.8498e-01 ± 5.5918e-03	4.3027e+01 ± 1.4326e+00	5.5564e-02 ± 1.4856e-02	9.8000e-01 ± 7.5182e-03	4.1529e+01 ± 1.4636e+00	6.4316e-02 ± 1.4561e-02
I	9.8265e-01 ± 3.7489e-03	3.9668e+01 ± 1.3652e+00	7.0586e-02 ± 1.4042e-02	9.7115e-01 ± 1.6481e-02	4.0101e+01 ± 1.5884e+00	7.8075e-02 ± 2.8748e-02	9.4207e-01 ± 1.4011e-02	3.6691e+01 ± 1.8129e+00	1.1186e-01 ± 2.3939e-02
к	9.2710e-01 ± 1.1893e-02	3.2969e+01 ± 1.9409e+00	1.5702e-01 ± 6.0112e-02	9.4638e-01 ± 2.1725e-02	3.7201e+01 ± 1.7370e+00	1.0886e-01 ± 3.7124e-02	9.6380e-01 ± 1.6273e-02	3.9053e+01 ± 1.4115e+00	8.5600e-02 ± 2.5653e-02
кі	9.0636e-01 ± 1.6601e-02	3.0627e+01 ± 2.0885e+00	2.0840e-01 ± 8.8545e-02	9.6601e-01 ± 1.7412e-02	3.9629e+01 ± 1.3494e+00	8.2621e-02 ± 3.2927e-02	9.5417e-01 ± 2.4976e-02	3.7166e+01 ± 1.9469e+00	1.0789e-01 ± 4.4907e-02

Results: Corrupted Data

Dataset	T1 3T			T2 1.5T			T1 3T & T2 1.5T		
Model	SSIM	PSNR	RMSE	SSIM	PSNR	RMSE	SSIM	PSNR	RMSE
Input	8.1877e-01 ± 4.5789e-02	2.5598e+01 ± 3.1054e+00	3.6372e-01 ± 1.3294e-01	8.2667e-01 ± 4.2110e-02	2.6137e+01 ± 2.1018e+00	3.9201e-01 ± 1.1345e-01	8.2555e-01 ± 4.2741e-02	2.6060e+01 ± 2.2793e+00	3.8799e-01 ± 1.1684e-01
CU-Net	8.7497e-01 ± 2.9343e-02	2.8005e+01 ± 1.9073e+00	2.6742e-01 ± 6.8117e-02	8.7046e-01 ± 3.1495e-02	2.7524e+01 ± 1.6587e+00	3.2917e-01 ± 7.5382e-02	8.5868e-01 ± 3.7086e-02	2.6921e+01 ± 2.0702e+00	3.4798e-01 ± 9.3188e-02
I	8.5325e-01 ± 4.0229e-02	2.7158e+01 ± 2.1591e+00	2.9367e-01 ± 6.8050e-02	8.8594e-01 ± 2.9389e-02	2.8198e+01 ± 1.6451e+00	3.0514e-01 ± 7.4697e-02	8.8092e-01 ± 2.8516e-02	2.7777e+01 ± 1.7843e+00	3.1275e-01 ± 7.2002e-02
к	8.7811e-01 ± 2.7894e-02	2.8252e+01 ± 1.8768e+00	2.6011e-01 ± 6.7219e-02	8.8319e-01 ± 2.7804e-02	2.7924e+01 ± 1.6639e+00	3.1422e-01 ± 7.1508e-02	8.6276e-01 ± 3.2724e-02	2.6586e+01 ± 2.0493e+00	3.6230e-01 ± 9.8917e-02
КІ	8.4066e-01 ± 3.0982e-02	2.5598e+01 ± 2.1375e+00	3.5552e-01 ± 1.0082e-01	8.6564e-01 ± 3.0226e-02	2.6650e+01 ± 1.8889e+00	3.6720e-01 ± 9.7826e-02	8.7745e-01 ± 3.0659e-02	2.7587e+01 ± 1.8198e+00	3.2002e-01 ± 7.565, -02

Results: Statistical Significance

Metric distributions: Mix T1 3T T2 15T Corrupted

Metric distributions: T1 3T Corrupted

Metric distributions: T2 15T Corrupted

16 | DEEP LEARNING IN BIOMEDICAL IMAGING

Conclusion:

- Developed a pipeline to simulate motion artefacts on raw k-space MRI scans without losing any information (keeping phase & magnitude)
- Trained AFT-Net on different datasets and with different configurations
- CU-Net and AFT-Net learn features to correct motion artefacts

Future work:

- Test the current architecture on motions only in a 2D space to confirm hypothesis
- Modify this network to handle raw 3D MRI data and create a 3D AFT-Net
- Test on pathological data to see if the model eases diagnosis
- Adapt the training pipeline for pathological data if necessary

Thank you!

18 | DEEP LEARNING IN BIOMEDICAL IMAGING

