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Abstract— MRI is very sensitive to motion, and thus motion 

related artefacts are a very common sight. Motion during scans 

degrades the image quality to the extent that patients may need 

to be called back for a repetition of the scan. This causes a lot of 

inconvenience to both the patient as well as the hospitals, and a 

lot of time is consumed. In this paper, we introduce motion 

artifacts, test the proposed novel complex-valued deep learning 

framework of Artificial Fourier Transform Network (AFT-Net), 

and discuss how well it corrects these motion artifacts during 

the image reconstruction task. 

Keywords— MRI reconstruction, motion artifacts, motion 

correction, biomedical imaging, Fourier transform. 

I. INTRODUCTION  

Magnetic resonance imaging is a modality that uses 
magnetic fields and computer-generated radio waves to 
generate detailed images of organs and tissues in the body. 
The MRI machines are long tube-shaped magnets in which the 
role of the magnetic field is to temporarily realign water 
molecules in the body so that the radio waves can cause these 
aligned atoms to produce faint signals in order to create cross-
sectional MRI images — like slices in a loaf of bread. [1] 

The organ being imaged in the machine is encoded using 
a strong magnet, radiofrequency (RF) pulses, and gradients, 
and the signal generated is digitized using an Analog to Digital 
Converter. This data is arranged in a complex array known as 
k-space, and has phase and frequency encoded data along the 
y-axis and x-axis respectively. K-space data is then decoded 
to generate an image through reconstruction techniques. [2] 

 Currently, Discrete Fourier Transform (DFT) is used as a 
common technique for transforming this frequency domain 

Fig 2. MRI Image Acquisition Process [2] 

k-space data to the image domain. The issue however is that 
DFT is known to introduce a lot of artifacts like the Gibbs 
effect around the edges. The distortion caused by 
reconstruction cannot be restored from conventional imaging 
processing methods due to information loss inevitably caused 
during the domain conversion. 

 

Fig 1. Gibbs Ringing Artifact due to Fourier Transform 

To solve the problem mentioned above, Yanting Et. al. 
propose a unified complex-valued image reconstruction 
approach for magnetic resonance images, which aims to 
remove any non- deep learning method in the workflow and 
incorporate data processing into deep learning frameworks 
[3]. The framework they describe in the study is the artificial 
Fourier transformation (AFT) which has the full functionality 
of a state-of- the-art Fourier transform. They utilize AFT 
combined with deep complex networks, U-Net specifically, to 
design the artificial Fourier transform network (AFT-Net) for 
MRI reconstruction and denoising. Given raw k-space data 
with a low signal-to-noise ratio (SNR), AFT-Net is proven to  

 



 

learn the mapping between two domains and remove noise 
while preserving useful structural information. 

Motion artifacts are very common and can negatively 
affect any diagnosis. The k-space data is sampled along the 
frequency-encoded axis almost instantaneously, unlike the 
phase-encoded axis sampling, which occurs in the magnitude 
of seconds or minutes because all lines of k-space must be 
collected to get the entire set needed for Fourier 
Reconstruction. 

Most physiological motions like respiration, swallowing 
and cardiac pulsation take between 100ms to several seconds, 
and are slower relative to the frequency-encoded sampling 
interval. Thus there is a very minute amount of spatial blurring 
locally in this axis. However, since the phase sampling 
interval is equal or longer than most motions, motion artifacts 
are significant in this direction [4]. In this project, we attempt 
to introduce subtle motion artifacts into the dataset and test the 
AFT-Net and related models on their ability to reconstruct the 
target image. 

II. ALGORITHMS IMPLEMENTED [3] 

A. Artificial Fourier Transform - AFT 

AFT is Artificial Fourier Transform which specializes in 
the task of image reconstruction from k-space to image 
domain. It is a complex-valued neural network that is based 
on the 2D DFT.  

 

B. Artificial Fourier Transform Network – AFT-Net 

 

AFT-Net is a combination of the AFT algorithm and the 

CU-Net algorithm – which is a complex valued version of the 

popular convolutional neural network algorithm that is 

widely used for biomedical image segmentation tasks –  

U-Net. The AFT-Net comes in three different types, and they 

are as follows: 

 

1) AFT-Net (I) 

 

AFT-Net (I) is an algorithm in which the output of the 

AFT is fed to the input of the CU-Net in order to perform the 

reconstruction task. 

 

2) AFT-Net (K) 

 

AFT-Net (K) is an algorithm in which the output of the 

CU-Net is fed to the input of the AFT in order to perform the 

reconstruction task along with denoising. The idea is that the 

CU-Net extracts relevant significant features from the k-

space and only these raw k-space domain features are used 

for the reconstruction task to the image domain – thus also 

performing denoising in the process. 

 

 

 



3) AFT-Net (KI) 

 

AFT-Net (KI) is an algorithm in which the output of the 

CU-Net is fed to the input of the AFT, and its output is fed 

into the CU-Net again in order to perform the reconstruction 

task along with accelerated imaging. In this algorithm the first 

CU-Net extracts relevant significant features from the k- 

space and the second CU-Net extracts relevant features from 

the image domain. 

III. DATASET USED 

For this project, we are using NYU Langone’s fastMRI 
dataset which is a publicly available dataset of raw k-space 
data corresponding fully sampled MRI images. This dataset 
was created by researchers at New York University and 
Facebook AI Research in collaboration and contains knee and 
brain MRI scans. It includes axial T1-weighted, T2-weighted 
and FLAIR images scanned with 4 coils and magnetic field 
strengths of 3T and 1.5T. 

While the dataset contains 6970 fully sampled brain MRI 
scans, we are focusing only on a subset of the brain data part 
of this dataset, and we’ll be using 801 fully sampled brain 
MRIs obtained on 3 and 1.5 Tesla magnets. This subset has 
692 T2 weighted scans obtained using 1.5 Tesla magnets, and 
109 T1 weighted scans obtained using 3 Tesla magnets. 

IV. METHODS 

To apply AFT-Net for motion correction, our approach 
was two-fold: 

A) Create a motion-corrupted dataset using the Brain 
MRI data.  

B) Test AFT-Net’s different configurations upon 
training T1-weighted scans and T2-weighted scans 
individually, and together. 

 To introduce motion artifacts into the images, we 
attempted using the TorchIO package. However, the issue 
with this package was that there was a significant amount of 
phase information loss as the package considered only the 
absolute values of the complex image as its input, and not the 
complex image itself. We then modified the class 
‘RandomMotion’ in this package such that motion 
transformations are applied to the real and imaginary parts 
individually and then combined to get the complex motion 
corrupted image. It is from this motion corrupted image that 
the motion corrupted k-space is generated. 

We then augmented our data by 2 times, by creating a 
simulated-corrupted-k-space for each raw-uncorrupted-k-
space using this modified version of the package TorchIO and 
used this augmented dataset as the training data for our model. 
We made sure to keep our two classes (corrupted and 
uncorrupted) balanced in each of our fold (60% training, 20% 
validation, and 20% testing). All fifteen of our models (AFT, 
CU-Net, AFT-Net (I), AFT-Net (K), and AFT-Net (KI)  
models each for T1 and T2 individually and then combined) 
were trained using the Google Colaboratory Virtual Machines 
with NVIDIA A100 GPUs (12 GB VRAM). Having let all our 
models train until the end, the total cumulated training time 
came to be about 180 hours. 

AFT and CU-Net were pretrained individually and then 
used in the transfer learning for the AFT-Net models. The 
optimizer used was Adam with a decaying learning rate, the 

loss function used was the mean squared error between the 
reconstructed motion-free image and the reconstructed 
motion-corrupted image. The validation score used was the 
Structural Similarity Index Measure (SSIM). 

V. RESULTS 

       The following are the visual results of the models trained 

on T1 and T2 datasets individually as well as trained together. 

  

 
Fig 4. Motion Correction with AFT-Net (KI) trained on T1 

 

 
Fig 5. Motion Correction with AFT-Net (K) trained on T2  

 

 
Fig 6. T1 image motion correction with AFT-Net (K) 

trained on both 



 
Fig 7. T2 image motion correction with AFT-Net (K) 

trained on both 

 

    We observe that the AFT-Net models can reconstruct the 

image adequately. In particular, corrupted images’ outputs 

have a distribution of quality metrics significantly different 

from their inputs (Supplemental material). 

VI. DISCUSSION 

We managed to develop a pipeline to simulate motion 
artefacts on raw k-space MRI scans without losing any 
information by keeping both phase & magnitude parts using a 
modified version of the TorchIO package. We also trained the 
AFT-Net on different datasets and with different 
configurations, and the CU-Net and AFT-Net learn features to 
correct motion artefacts. The improvements and the 
interesting aspects of our project are that we take the raw-k-
space as input, which means there is no preprocessing needed, 
no detection of movement needed and also there is no loss of 
data involved - like phase.  

To validate this hypothesis, our future work would include 
to test the current architecture on motions obtained only in a 
2D space. One limitation of our models is that they are in 2D, 

and therefore, have a hard time correcting 3D type of motion. 
Modifying this network to handle raw 3D MRI data and 
creating a 3D AFT-Net could help correct many more 
artefacts. 
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TABLE I: RESULTS ON MOTION FREE K-SPACE DATA 

 

TABLE II: RESULTS ON MOTION CORRUPTED K-SPACE DATA 

 

 

  
Dataset 

T1 3T T2 1.5T 
T1 3T  

& T2 1.5T 

Model SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR RMSE 

CUNet 

9.2102e-

01 ± 

1.1777e-

02 

3.2554e+01 

± 

1.4513e+00 

1.6120e-

01 ± 

4.0768e-

02 

9.8498e-01 

± 5.5918e-

03 

4.3027e+01 

± 

1.4326e+00 

5.5564e-

02 ± 

1.4856e-

02 

9.8000e-

01 ± 

7.5182e-

03 

4.1529e+01 

± 

1.4636e+00 

6.4316e-

02 ± 

1.4561e-

02 

I 

9.8265e-

01 ± 

3.7489e-

03 

3.9668e+01 

± 

1.3652e+00 

7.0586e-

02 ± 

1.4042e-

02 

9.7115e-01 

± 1.6481e-

02 

4.0101e+01 

± 

1.5884e+00 

7.8075e-

02 ± 

2.8748e-

02 

9.4207e-

01 ± 

1.4011e-

02 

3.6691e+01 

± 

1.8129e+00 

1.1186e-

01 ± 

2.3939e-

02 

K 

9.2710e-

01 ± 

1.1893e-

02 

3.2969e+01 

± 

1.9409e+00 

1.5702e-

01 ± 

6.0112e-

02 

9.4638e-01 

± 2.1725e-

02 

3.7201e+01 

± 

1.7370e+00 

1.0886e-

01 ± 

3.7124e-

02 

9.6380e-

01 ± 

1.6273e-

02 

3.9053e+01 

± 

1.4115e+00 

8.5600e-

02 ± 

2.5653e-

02 

KI 

9.0636e-

01 ± 

1.6601e-

02 

3.0627e+01 

± 

2.0885e+00 

2.0840e-

01 ± 

8.8545e-

02 

9.6601e-01 

± 1.7412e-

02 

3.9629e+01 

± 

1.3494e+00 

8.2621e-

02 ± 

3.2927e-

02 

9.5417e-

01 ± 

2.4976e-

02 

3.7166e+01 

± 

1.9469e+00 

1.0789e-

01 ± 

4.4907e-

02 

  

Dataset 
T1 3T T2 1.5T 

T1 3T  

& T2 1.5T 

Model SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR RMSE 

Input 
8.1877e-01 ± 

4.5789e-02 

2.5598e+01 

± 

3.1054e+00 

3.6372e-

01 ± 

1.3294e-

01 

8.2667e-

01 ± 

4.2110e-

02 

2.6137e+01 

± 

2.1018e+00 

3.9201e-

01 ± 

1.1345e-

01 

8.2555e-

01 ± 

4.2741e-

02 

2.6060e+01 

± 

2.2793e+00 

3.8799e-

01 ± 

1.1684e-

01 

CUNet 
8.7497e-01 ± 

2.9343e-02 

2.8005e+01 

± 

1.9073e+00 

2.6742e-

01 ± 

6.8117e-

02 

8.7046e-

01 ± 

3.1495e-

02 

2.7524e+01 

± 

1.6587e+00 

3.2917e-

01 ± 

7.5382e-

02 

8.5868e-

01 ± 

3.7086e-

02 

2.6921e+01 

± 

2.0702e+00 

3.4798e-

01 ± 

9.3188e-

02 

I 
8.5325e-01 ± 

4.0229e-02 

2.7158e+01 

± 

2.1591e+00 

2.9367e-

01 ± 

6.8050e-

02 

8.8594e-

01 ± 

2.9389e-

02 

2.8198e+01 

± 

1.6451e+00 

3.0514e-

01 ± 

7.4697e-

02 

8.8092e-

01 ± 

2.8516e-

02 

2.7777e+01 

± 

1.7843e+00 

3.1275e-

01 ± 

7.2002e-

02 

K 
8.7811e-01 ± 

2.7894e-02 

2.8252e+01 

± 

1.8768e+00 

2.6011e-

01 ± 

6.7219e-

02 

8.8319e-

01 ± 

2.7804e-

02 

2.7924e+01 

± 

1.6639e+00 

3.1422e-

01 ± 

7.1508e-

02 

8.6276e-

01 ± 

3.2724e-

02 

2.6586e+01 

± 

2.0493e+00 

3.6230e-

01 ± 

9.8917e-

02 

KI 
8.4066e-01 ± 

3.0982e-02 

2.5598e+01 

± 

2.1375e+00 

3.5552e-

01 ± 

1.0082e-

01 

8.6564e-

01 ± 

3.0226e-

02 

2.6650e+01 

± 

1.8889e+00 

3.6720e-

01 ± 

9.7826e-

02 

8.7745e-

01 ± 

3.0659e-

02 

2.7587e+01 

± 

1.8198e+00 

3.2002e-

01 ± 

7.5657e-

02 
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